DOI: 10.1021/ma102492c

Macromolecules COMMUNICATION TO THE EDITOR

ATRP of Methyl Acrylate with Metallic Zinc, Magnesium, and Iron as Reducing Agents and Supplemental Activators

Yaozhong Zhang, Yu Wang, and Krzysztof Matyjaszewski*

Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States

Received November 2, 2010 Revised Manuscript Received December 22, 2010

Atom transfer radical polymerization (ATRP) provides access to well-defined polymers with complex architecture, such as block and graft copolymers, stars or brushes.^{1–5} Typically, ATRP is initiated by alkyl halides in the presence of Cu¹ complexes with N-based ligands as catalysts.^{6–12} Alternative ATRP initiating systems were developed, based on reverse ATRP, simultaneous normal and reverse initiating systems and activators generated by electron transfer (AGET). In these systems, oxidatively stable Cu^{II} complexes were reduced to the Cu^I complexes at the beginning of the reaction with radicals formed by decomposition of radical initiators or various reducing agents, such as tin¹ 2-ethylhexanoate, ascorbic acid or sugars. These initiating systems laid foundation for the development of the next generation of ATRP systems, carried out in the presence of small amounts (ppm) of the Cu-complex in which the activator catalyst complexes, the Cu¹ species, are continuously regenerated during the polymerization. In initiators for continuous activator regeneration (ICAR) ATRP, 18 the deactivating Cu^{II} species, formed by unavoidable termination reactions, are continuously reduced to reform the activating Cu^I species by reaction with conventional radical initiators. In activators regenerated by electron transfer (ARGET) ATRP^{18–26} an excess of various mild reducing agents, that do not form molecules capable of initiating an ATRP, is used. Reducing agents include such organic reducing agents as glucose, ascorbic acid, hydrazine, phenols, amines, or even excess of ligands²⁷ but also inorganic reducing agents such as tin^{II} 2-ethylhexanoate,²⁰ or zerovalent copper.^{28–31} In search of new reducing agents we explored other inorganic species, such as zerovalent metals, Zn⁰, Mg⁰, and Fe⁰.

ATRP of MA initiated by methyl 2-bromopropionate (MBP) and catalyzed by CuBr₂/Me₆TREN was studied in the presence of Zn⁰, Mg⁰, and Fe⁰ (Table 1). With the initial molar ratio of reagents; [MA]₀/[MBP]₀/[Me₆TREN]₀/[CuBr₂]₀ = 200/1/0.1/0.02, in 33.3% (v/v) DMSO ([MA]₀ = 7.4 M), at 25 °C, the polymerizations reached 82%, 84% and 88% conversion in 4, 11, and 72 h, in the presence of Zn⁰, Mg⁰ and Fe⁰, respectively (surface areas for all metals were the same, ca. 33 mm²). Thus, the apparent order of activity of the reducing agents was Zn⁰ > Mg⁰ > Fe⁰. The molecular weights of the PMA formed in these reactions agreed with theoretical values and $M_{\rm w}/M_{\rm n}$ values were lower than 1.1.

When PMDETA was used as the ligand instead of Me_6TREN , the same order of activity was found but overall level of control was lower. With Zn^0 as the reducing agent, after 8 h reaction, a polymer with $M_n = 14\,800$, $M_w/M_n = 1.47$ was formed in 80% yield. With Mg^0 , 19 h was required to obtain 90% conversion yielding a polymer with $M_n = 15\,900$, $M_w/M_n = 1.25$. When Fe⁰

was used, 72% conversion was reached after 56 h, producing a polymer with $M_{\rm n}=13\,300$ with the lowest value of $M_{\rm w}/M_{\rm n}=1.12$. The ATRP equilibrium is defined as:

$$K_{ATRP} = \frac{[\mathbf{R}^{\bullet}][\mathbf{C}\mathbf{u}^{\mathrm{II}}\mathbf{X}_{2}/\mathbf{L}]}{[\mathbf{R}\mathbf{X}][\mathbf{C}\mathbf{u}^{\mathrm{I}}\mathbf{X}/\mathbf{L}]}$$

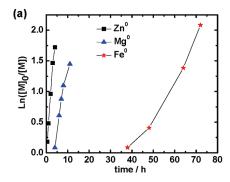
Thus, higher [R*] (faster polymerization) is for catalyst with larger value of $K_{\rm ATRP}$ and lower ratio of ${\rm Cu^{II}/L}$ and ${\rm Cu^{I}/L}$. This ratio depends also on the redox process with reducing agents. Apparently, much higher $K_{\rm ATRP}$ for Me₆TREN-based system results in faster polymerization. However, the reduction process also maintains higher [Cu^{II}/Me₆TREN] than [Cu^{II}/PMDETA], as evidenced by formation of polymers with lower $M_{\rm w}/M_{\rm n}$ values for the former system. Fe⁰ is a weaker reducing agent than Zn⁰ or Mg⁰ and results in higher [Cu^{II}/PMDETA], leading to slower polymerization and polymers with lower $M_{\rm w}/M_{\rm n}$.

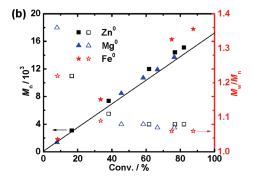
From the kinetic study (Figure 1), it can be concluded that Zn⁰ showed highest reducing activity among three metals studied in an ATRP, although Mg has the most negative reducing potential (-2.7 V vs SHE in comparison with -0.76 V for Zn and -0.45 V for Fe).³² An induction period was observed in the presence of Mg⁰, plausibly because the surface of Mg⁰ was oxidized by air that could reduce its reactivity. Fe⁰ led to the slowest polymerization after a long induction period. The best control was observed, probably due to the slow reducing process with Fe⁰. UV-vis studies showed that Zn⁰ and Mg⁰ could reduce CuBr₂/L to CuBr/L nearly completely; however, the reduction process proceeded to much lower extent and was much slower with Fe⁰ as reducing agent (Figure S1, Supporting Information).

The products of the redox process for metal Zn^0 and Mg^0 are Zn^{II} and Mg^{II} halides. However, for Fe^0 there are two possible products Fe^{III} and Fe^{II} halides. However, since the value of $E_{1/2}$ ($Fe^{3+}/L/Fe^{2+}/L$) is 500 mV more positive than $E_{1/2}(Cu^{2+}/L/Cu^{+}/L)$ with ligand of Me_6TREN (300 mV more positive with PMDETA), this indicates the preference of formation of Cu^{II}/L and Fe^{II}/L rather than Cu^{I}/L and Fe^{III}/L (Table S1, Supporting Information). Thus, Fe^{II}/L is not an efficient reducing agent, and a slow reduction should involve Fe^0 .

The molecular weights of the resulting PMA prepared in the presence of all three metals were close to the theoretical values. The molecular weight distribution was relatively broad at low conversion but very low values of $M_{\rm w}/M_{\rm n}$ (<1.1) were obtained after the conversion exceeded 50%.

To evaluate the role of zerovalent metals, additional experiments were performed in the absence of $CuBr_2$ but in the presence or the absence of Me_6TREN ligand (Table 2).


No polymerization of MA was observed in the absence of Me₆TREN. Polymerizations proceeded in the presence of a ligand,


Table 1. ATRP of MA with Metallic Zn⁰, Mg⁰, and Fe⁰ as Reducing

ligand	metal	time/h	conv/%	$M_{\rm n,GPC}$	$M_{\rm n,th}$	$M_{\rm w}/M_{\rm n}$
Me ₆ TREN	Zn^0	4	82	15 100	14 100	1.08
Me ₆ TREN	${ m Mg^0} \ { m Fe^0}$	11	84	13 800	14 500	1.07
Me ₆ TREN	Fe^{0}	72	88	17 800	15 100	1.06
PMDETA	Zn^0	8	80	14800	13 700	1.47
PMDETA	${ m Mg}^0$ Fe 0	19	90	15 900	15 400	1.25
PMDETA	$Fe^{\bar{0}}$	56	72	13 300	12 400	1.12

 a [MA]₀/[MBP]₀/[ligand]₀/[CuBr₂]₀ = 200/1/0.1/0.02, in 33.3% (v/v) DMSO ([MA]₀ = 7.4 M), at 25 °C. Zn⁰ wire (d = 1 mm, L = 10 mm), Mg⁰ ribbon (width = 3 mm, thickness = 0.15 mm, L = 5 mm), and Fe⁰ wire (d = 0.5 mm, L = 20 mm) were used. All surface areas are 33 mm².

^{*}Corresponding author. E-mail: km3b@andrew.cmu.edu.

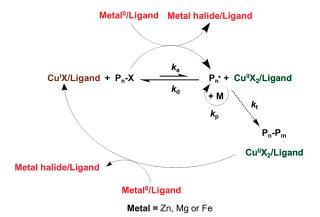

Figure 1. (a) Kinetic plots of $\ln([M]_0/[M])$ vs time and (b) Evolution of number-average molecular weights M_n and M_w/M_n values vs conversion for ATRP of MA with Zn^0 , Mg^0 and Fe^0 as reducing agent. $[MA]_0/[MBP]_0/[Me_6TREN]_0/[CuBr_2]_0 = 200/1/0.1/0.02$, in 33.3% (v/v) DMSO ($[MA]_0 = 7.4 M$), at 25 °C. Zn^0 wire (d=1 mm, L=10 mm), Mg^0 ribbon (width = 3 mm, thickness = 0.15 mm, L=5 mm), Fe^0 wire (d=0.5 mm, L=20 mm). A constant surface area \sim 33 mm² for all metals was used.

Table 2. Zn⁰, Mg⁰, and Fe⁰ Initiated Free Radical Polymerization of MA without CuBr₂^a

ligand	metal	time/h	conv/%	$M_{\rm n,GPC}$	$M_{\rm n,th}$	$M_{ m w}/M_{ m n}$
Me ₆ TREN	Zn^0	19	44	220 000	7600	2.07
Me ₆ TREN	${ m Mg^0} \ { m Fe^0}$	48	31	130 000	5400	1.83
Me ₆ TREN	$\mathrm{Fe}^{\overline{0}}$	17	16	43 600	2900	1.82
none	Zn^0	36	~ 0			
none	${ m Mg^0} \ { m Fe^0}$	36	~ 0			
none	$\mathrm{Fe^0}$	36	~ 0			

 a [MA]₀/[MBP]₀/[ligand]₀ = 200/1/0.1, in 33.3% (v/v) DMSO ([MA]₀ = 7.4 M), at 25 °C. Zn wire (d=1 mm, L=10 mm), Mg ribbon (width = 3 mm, thickness = 0.15 mm, L=5 mm), and Fe wire (d=0.5 mm, L=20 mm) were used . All surface areas were 33 mm².

Scheme 1. ATRP of MA with Zero-Valent Metal as Supplemental Activator and Reducing Agent

but without $CuBr_2$, however, they were much slower than reactions conducted in the presence of $CuBr_2$ for all three systems. Molecular weights were much larger than predicted for quantitative initiation ($M_{n,th}$) and molecular weights distributions were very broad. This may indicate a more conventional redox initiated polymerization with the higher oxidation state metal complexes acting as very poorly deactivating species.

However, it appears that all three metals (or metal oxides on the surface) can react with alkyl halides and can initiate a polymerization. Therefore, they can act not only as reducing agents but also as supplemental activators. Thus, the mechanism of ATRP with a zerovalent metal as reducing agent may be slightly different compared to that with organic reducing agents such as ascorbic acid, glucose, or amines, since the zerovalent metal can directly, albeit slowly, react with the alkyl halide in the presence of a ligand. The reactions involved in zerovalent metal mediated ARGET ATRP are shown in Scheme 1. Such a dual role of supplemental activator (SA) and reducing agent (RA) can be termed as SARA ATRP.

In summary, well-controlled ATRP of MA was performed with three zerovalent metals, Zn^0 , Mg^0 , and Fe^0 , as reducing agents to continuously regenerate the activator CuBr/ligand from $CuBr_2$ /ligand complex, formed due to radical termination. The metals alone, in the presence of ligands, can also act as supplemental activators but they form inefficient deactivators. The observed activity of Zn^0 was higher than that of Mg^0 which exceeded that of Fe^0 .

Acknowledgment. The authors thank the National Science Foundation (CHE-10-26060) and the members of the CRP Consortium at Carnegie Mellon University for their financial support.

Supporting Information Available: Experimental section, UV—vis spectra for the reduction with different metals, and cyclic voltametry data. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Lee, H.-i.; Pietrasik, J.; Sheiko, S. S.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 24–44.
- (2) Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Prog. Polym. Sci. 2008, 33, 759–785.
- (3) Gao, H.; Matyjaszewski, K. Prog. Polym. Sci. 2009, 34, 317-350.
- (4) Shinoda, H.; Matyjaszewski, K. Macromolecules 2001, 34, 6243–6248.
- (5) Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93–146.
- (6) Wang, J.-S.; Matyjaszewski, K. Macromolecules 1995, 28, 7901-7910.
- (7) Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614–5615.
- (8) Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689–3746.
- (9) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921-2990.
- (10) Matyjaszewski, K.; Tsarevsky, N. V. Nat. Chem. 2009, 1, 276-288.
- (11) Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270–2299.
- (12) di Lena, F.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 959–1021.
- (13) Wang, J.-S.; Matyjaszewski, K. Macromolecules 1995, 28, 7572–7573.
- (14) Gromada, J.; Matyjaszewski, K. Macromolecules 2001, 34, 7664-
- (15) Min, K.; Jakubowski, W.; Matyjaszewski, K. Macromol. Rapid Commun. 2006, 27, 594–598.
- (16) Jakubowski, W.; Matyjaszewski, K. Macromolecules 2005, 38, 4139–4146.
- [17] Min, K.; Gao, H.; Matyjaszewski, K. J. Am. Chem. Soc. 2006, 128, 10521–10526.
- (18) Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J. Y.; Braunecker, W. A.; Tsarevsky, N. V. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15309–15314.
- (19) Jakubowski, W.; Matyjaszewski, K. Angew. Chem., Int. Ed. 2006, 45, 4482–4486.
- (20) Jakubowski, W.; Min, K.; Matyjaszewski, K. Macromolecules 2006, 39, 39-45.

- (21) Dong, H. C.; Tang, W.; Matyjaszewski, K. Macromolecules 2007, 40, 2974–2977.
- (22) Min, K.; Gao, H. F.; Matyjaszewski, K. Macromolecules 2007, 40, 1789–1791.
- (23) Matyjaszewski, K.; Dong, H.; Jakubowski, W.; Pietrasik, J.; Kusumo, A. *Langmuir* **2007**, *23*, 4528–4531.
- (24) Pietrasik, J.; Dong, H.; Matyjaszewski, K. Macromolecules 2006, 39, 6384–6390.
- (25) Tang, H.; Arulsamy, N.; Radosz, M.; Shen, Y.; Tsarevsky, N. V.; Braunecker, W. A.; Tang, W.; Matyjaszewski, K. J. Am. Chem. Soc. 2006, 128, 16277–16285.
- (26) Gnanou, Y.; Hizal, G. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 351–359.

- (27) Kwak, Y.; Matyjaszewski, K. Polym. Int. 2009, 58, 242-247.
- (28) Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M. L.; Woodworth, B. E. *Macromolecules* **1997**, *30*, 7348–7350.
- (29) Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. J. Am. Chem. Soc. 2006, 128, 14156–14165.
- (30) Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.; Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J. A. *Macromolecules* **2007**, *40*, 7795–7806.
- (31) Hornby, B. D.; West, A. G.; Tom, J. C.; Waterson, C.; Harrisson, S.; Perrier, S. Macromol. Rapid Commun. 2010, 31, 1276–1280.
- (32) Lide, D. R. CRC Handbook of Chemistry and Physics, 90th ed.; CRC Press: Boca Raton, FL, 2009.